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Abstract. We have derived eleven-term high temperature series for the wavevector 
dependent susceptibility x(q) of the A N N N I  model in two and three dimensions. In three 
dimensions the locations of the phase boundaries of the ferromagnetic and modulated 
phases, and the location of the Lifshitz point, are found to be in good agreement with 
previous work. In two dimensions the analysis is less precise, but yields results consistent 
with the currently accepted picture in which the paramagnetic phase extends to zero 
temperature at the multiphase point. 

1. Introduction 

There is currently much interest in physical systems with spatially modulated phases, 
which can be either commensurate or incommensurate with the underlying lattice. 
Such behaviour can be found in a variety of systems-for example, certain magnetic 
compounds, adsorbed monolayers on surfaces, charge density wave systems. 

A particularly simple model which exhibits a modulated phase, and which is 
therefore of interest for understanding such behaviour in real systems, is an Ising 
model with competing ferromagnetic and antiferromagnetic interactions along one 
lattice direction-this is the so-called ANNNI model. Much work has been done on 
this model during the last five years, using a variety of complementary techniques, and 
its properties are now fairly well understood. We do  not attempt here to survey the 
extensive literature, but refer to a recent review by Selke (1984). A good introduction 
to the general topic of commensurate and incommensurate phases has been given 
recently by Bak (1982). 

The ANNNI model is shown in figure 1, and consists of a set of planes (or lines) 
with nearest-neighbour interactions of strength J,, which are coupled in the z direction 
by nearest-neighbour interactions of strength J ,  and next-nearest-neighbour interactions 
of strength J2. Thus we may write the Hamiltonian as: 

with a, = * 1. The zero-field energy of the system is unchanged on changing the signs 
of Jo and/or  JI, so that without loss of generality we take these to be positive 
(ferromagnetic). J2 is taken to be of either sign, although the most interesting case is 
when J2 is negative, corresponding to competing antiferromagnetic second-neighbour 
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Figure 1. The A N N N I  model in three and two dimensions. 

interactions in the z direction. It is this competition which gives rise to the possibility 
of a modulated phase. 

For completeness we give a brief discussion of the predictions of mean-field theory 
for this model. The wavevector dependent susceptibility in the paramagnetic phase, 
within this approximation, is given by: 

x(9) = XO/P  - PJ(q)l (2) 

J ( q )  =4Jo-k2Jl C0s(2.rrq)+2J2 Cos(4.rrq). (3) 

where x0 is the single spin susceptibility, p = l/k,T, and 

In writing the expression (3) we have specialised to the three-dimensional case 
with wavevector in the z direction. It is easy to see that when JI + 4J2 > 0 the quantity 
J (  q )  has a maximum at q = 0, and hence as the temperature is lowered the susceptibility 
diverges first at q = 0, corresponding to a transition to a ferromagnetically ordered 
phase. However when JI + 45, < 0 the susceptibility diverges first at a critical wavenum- 
ber 2.rrqc = cos-’( -Jl/4J2), corresponding to a transition to aphase whose magnetisation 
is modulated in the z direction with this characteristic wavenumber. The point J2 = - -aJ , ,  
with transition temperature kBTc = 4J0+ 1.5Jl, is thus a Lifshitz point (Hornreich et a1 
1979), a point at which disordered, ferromagnetic and modulated phases meet. Bak 
and von Boehm (1980) have analysed the structure of the modulated phase itself and 
find a ‘devil’s staircase’ structure of commensurate phases. At T = 0 the ordered state 
is ferromagnetic for J2 > -fJ, and a commensurate state with q = a  (consisting of two 
up layers, followed by two down layers, etc) for J2 < - ; J , .  

Various methods have been used to go beyond mean-field theory. While not 
attempting to be comprehensive, we mention the high temperature series work of 
Redner and Stanley (1977a, b), the low temperature series approach of Fisher and 
Selke (1981), and the Monte Carlo work of Selke and Fisher (1979) and Rasmussen 
and Knak Jensen (1981) for the three-dimensional case. In two dimensions there are 
Monte Carlo results (Selke 1981), analytic approximations (Villain and Bak 1981, 
Kroemer and Pesch 1982), and series work ( S  Redner, unpublished). In addition there 
are studies of a one-dimensional quantum analogue (Barber and Duxbury 1982, 
Duxbury and Barber 1982, Rujan 1981). 

In this paper we present the results of a study of both the two- and three-dimensional 
versions of the ANNNI model. Using a high temperature multigraph expansion formal- 
ism (Oitmaa 198 1 )  we have derived and analysed eleven-term series for the wavevector 
dependent susceptibility ,y(q) .  This work should thus be regarded as an extension of 
the work of Redner and Stanley (1977a, b), who obtained an eight-term series using 
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the Wortis linked-cluster method. We discuss, briefly, the method of derivation of the 
series in the following section. Section 3 is devoted to an analysis of the three- 
dimensional series, while the analysis for the two-dimensional case is given in § 4. In 
§ 5 we summarise our results. 

2. Calculation of the series 

The wavevector dependent susceptibility x( q )  is given by the expression: 

J 

where the sum is over all correlations (IT~CT,) and z, is the number of lattice spacings 
in the z direction, between the spins 0 and j .  The correlation function itself is given by: 

(a,-p,) = Tr(e-P"eaoa,)/Tr(e-Px) ( 5 )  

and it is well kiown (Domb 1974) that a high temperature expansion for this quanfity 
can be cpnstructed in which the various terms are associated with graphs on the lattice. 
A variant of this method, which is particularly convenient for Ising problems with a 
variety of interaction types, was derived by the present author (Oitmaa 1981). This 
results in an expansion of the form: 

where the sum is over a particular set of graphs (of which there are 3296 through 1 Ith 
order), WG is a 'graph weight' which is the same for any Ising problem, and XG is a 
factor which is obtained by: 

( i )  summing over all embeddings of G on the lattice, 
( i i )  including for each embedding a factor II, U?, where v, = tanh PJ,  and n, is 

(iii) including for each embedding a factor e2ni9r. 
In this way we obtain a high temperature series of the form: 

the number of type a bonds in the embedding, 

with uo = tanh PJo, etc. The data is actually stored in the form Cnrs(z)  for correlations 
between spins which are separated by any number of z units. The data is much too 
extensive to publish here, but can be supplied on request. It is then possible to construct 
a x series for any wavenumber. 

There are several partial checks available for our results. For the ANNNI model 
itself Redner and Stanley (1977a, b) have tabulated the C,,, coefficients for the fer- 
romagnetic case ( q  = 0) for n S 8, as well as coefficients for the second and fourth 
moment (z'), (z'). Our results are in complete agreement to this order (we have found 
two minor typographical errors in the (z4) coefficients). For the additional terms there 
is a check with published series only for the case J 2 = 0 ,  and in this case complete 
agreement is found. There must remain the possibility that our results contain small 
errors, not detectable by the above checks, but we feel this is unlikely as most steps 
in the series calculation are computerised. 
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For purposes of the ana1ysi.s we parametrise the interactions by J, = KJ,, J2 = AJ,. 
For any choice (K, A )  we expand the hyperbolic tangent factors and obtain a single 
variable series in powers of K = Jo/ k, T. These are then analysed by standard methods. 

3. The three-dimensional case 

We discuss in this section the analysis of our series for the three-dimensional ANNNI 

model, and present the form of the resulting phase diagram. For simplicity we discuss 
only the case J, = Jo (i.e. K = 1 )  although series for other values of K have been analysed, 
with similar results. 

For A > 0 (all interactions ferromagnetic) the series for ~ ( 0 )  show a consistent 
physical singularity whose position and exponent can be easily and reliably estimated 
from conventional ratio and PadC approximate methods. The ratios do show an 
odd-even oscillation, reflecting the presence of an ‘antiferromagnetic’ singularity on 
the negative real axis, which approaches the circle of convergence as A + O s  For 
-0.26 s A -=c 0 the analysis is complicated by the fact that the antiferromagnetic singular- 
ity lies closer to the origin than the singularity of interest. An Euler transformation 
can be used to move the physical singularity closer to the origin, as discussed for 
example by Redner and Stanley (1977a). The transition is still to a ferromagnetic 
ordered phase. 

When the interaction J2 becomes sufficiently negative ( A  S -0.27) the ordered phase 
is no longer the uniform ferromagnetic one ( q  = 0) but one characterised by a modula- 
tion of wavenumber q. This is clearly manifested by the ferromagnetic series becoming 
highly irregular and yielding no consistent singularity on the positive real axis. Within 
a rather small range of non-zero q values the series for x ( q )  is found to be regular 
and can be analysed by first carrying out an Euler transformation and then using both 
ratio and PadC methods. The critical wavenumber qc can be estimated from the position 
of the minimum in a plot of K J q )  against q. A much simpler criterion for locating 
the approximate value of qc is to simply plot the values of the high order series 
coefficients against q. The coefficients go through a distinct maximum which, if the 
function contained only a single power-law singularity on the positive real axis, would 
give qc precisely. 

We present some typical results, for the case A = -0.3. Figure 2(a)  shows the 
variation of series coefficients with q, and shows a clear maximum at q = 0.08, which 
tends to move slightly to lower q at higher order. This suggests that ,y( q )  for q = 0.08 
will show a divergence with the smallest value of K,, which can indeed be seen in the 
PadC results of figure 2(b). Although the minima for different Padis do not occur at 
the same value of q, when we consider in addition Pad& and ratios to the Euler 
transformed series we are able to estimate, for this case, that qc = 0.07 f 0.005. A similar 
analysis has been carried out for values of A in the range A 2 -0.8. 

Our results are summarised in figure 3 .  Figure 3 ( a )  shows the variation of the 
critical temperature with the parameter A = J2/ J,,. The shape of the critical line is quite 
similar to the mean-field prediction and the location of the Lifshitz point, which we 
estimate to be A = -0.270*0.005, is close to the mean-field value A = -0.25. Figure 
3(  b )  gives the variation of critical wavenumber qc with A, and shows that qc increases 
smoothly from zero at A = A L  to a value qc=0.2 at A = -0.8. This shows that the 
transition is not immediately to the (2) phase which has qc=0.25, and which is the 
stable phase at T = O  for A < -0.5, but rather to a modulated phase with a longer 
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wavelength. Using this approach we cannot of course distinguish between a truly 
incommensurate 'floating' phase and a sequence of commensurate phases of varying 
order. 
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Figure 2. ( a )  Values of series coefficients C,, C,o, C,, (on an arbitrary scale) against q for 
the 3D system with A = -0.3. ( b )  Pad6 estimates of K, against q for the 3D system with 
A = -0.3. 
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Figure 3. ( a )  Variation of critical tem- 
perature with J z / J o  for the 3 D A N N N I  

model, as determined from high tem- 
perature the Lifshitz series. point The and open the square broken denotes curve 
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We expect that the nature of the singularity in the susceptibility, along the entire 
critical line, should be of the form 

x(4) = C{1 - [ K I K , ( ~ ) l l - Y .  

The exponent y should remain constant at the Ising value y 3 1.24 for A > AL,  should 
take a different value yL at the Lifshitz point itself, and should have a constant value 
y =  1.32 for A < AL,  corresponding to the X Y  exponent (Garel and Pfeuty 1976). 
Analysis of the series by standard ratio and Pad6 methods, assuming a simple power-law 
singularity, yields an apparent continuous variation of y, as shown in figure 3(c). Our 
results do not differ significantly from those of Redner and Stanley (l977b), who 
attributed the apparent continuous variation in y to crossover effects and to the 
shortness of the series. A puzzling and unexplained feature is the apparent decrease 
of y to something like the Ising value for large negative A. 

It is conceivable that the estimates of y are being affected by the presence of a 
confluent singularity. In order to test this we have used a quadratic transformation of 
the form 

1 - ( K / K A = P 2 U  - Y ) * l ( P - Y ) ’  

as proposed by Nickel and Dixon (1982). The transformed series are not significantly 
more regular than the series in K, and although estimates of y tend to be slightly 
below those of figure 3 ( c ) ,  the change is about the same for all A. 

4. The two-dimensional case 

Analysis of the series for the two-dimensional ANNNI model follows similar lines, but 
the results are less precise. We discuss again only the case in which J ,  = Jo. 

For A > -0.2 analysis of the ferromagnetic series x (0 )  is straightforward and 
confirms the picture of a normal Ising-like transition, with y =  1.75, and a critical 
temperature which varies with A in the manner shown in figure 5 .  Below A = -0.2 the 
series become irregular and cannot be analysed directly. We have attempted to analyse 
the series for 

~ ( K I )  = ( 1  - 2 ~ ’ ) - 1 . ~ 5 ~ ( ~ ’ )  (9) 
with K’  = K / (  1 + 2K).  The Euler transformation moves the interfering antiferromag- 
netic singularity far outside the circle of convergence, and the prefactor removes the 
spurious singularity introduced by the Euler transformation (Redner and Stanley 
1977a). 

Pad6 approximants to i ( K ‘ )  reveal a very consistent pole on the positive real axis, 
but the results are unusual for two reasons: 

( i )  the location of the pole moves to larger values as A is decreased from-0.2 to 
-0.35 (indicating a decreasing critical temperature, as expected) but begins to move 
back towards the origin for A < -0.35, 

( i i )  the exponent decreases rapidly with A. 
These results are shown in figure 4 (a ) ,  and could be interpreted as indicating the 

presence of a finite temperature Lifshitz point at A = 0.3. However, ratio plots for the 
same series, shown in figure 4 ( b ) ,  do not appear to converge towards the Pad6 
predictions, at least for A < -0.3. This suggests that the series in this region are too 
short to reveal the true asymptotic behaviour. If there were a Lifshitz point at A < -0.3 
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then it should be possible to extend the critical line past this point by looking for 
singularities in a x ( q )  with non-zero q. However, we find that series for all q are 
highly irregular, and we thus conclude that there is no evidence for a Lifshitz point 
in this region. 

1 I 
-0.4 -0 3 -0 2 

h=J,lJ, 

Figure4. (a )  Position of pole on positive real 
axis for -0.4s A 6  -0.2 for the ZD ANNNI 
model (full curve) and the apparent suscepti- 
bility exponent (broken curve). ( b )  Ratio plot 
of the transformed series i ( K )  for -0.46 A 6 
-0.2. The ordinate scale has been adjusted 
by subtracting the numbers in brackets from 
the true ratios. The arrows on the ordinate 
axes show the Pad6 estimates. 

i 
-0 40 

I 

m I l l 0 9  8 I 6 
01 

For large negative values of A ( A  d -0.6) we find evidence for a consistent singularity 
in x( q )  with a non-zero wavenumber q, indicating that the transition in this case is to 
a modulated phase. For a given A the critical wavenumber qc is determined in the 
same way as for the three-dimensional case in 4 3. We give some details of the analysis 
for the case A = -1.0, which is typical. In this case qc is found to be ~ 0 . 2 3 .  Dlog 
Pad& to x ( K )  give a consistent pole at Kc-0.485*0.01 with an exponent y =  1.9, 
and an antiferromagnetic singularity at K = -0.28. After an Euler transformation 
K ‘ = K / ( l + 3 K )  Dlog Pad& to x ( K ’ )  give a very consistent pole at K : =  
0.1980 * 0.000 1 (corresponding to K ,  = 0.4877 * 0.0006) and an exponent y = 1.94 f 0.0 1. 
Ratio analysis gives results consistent with this. 

There are strong arguments for expecting the transition to the modulated phase to 
be of the Kosterlitz-Thouless type, with an essential singularity rather than one of the 
usual power-law type. Guttmann (1978) has pointed out that one might distinguish 
between the two cases by analysing the second logarithmic derivative, when an algebraic 
singularity in the original series would become a simple pole with residue 1 whereas 
an essential singularity of the form exp{ c [  1 - (x/x,)]-~} would give a pole with residue 
1 +g. In the present case (Dlog)’ Pad& to x ( K )  and to the transformed series x ( K ’ )  
givc poles near the previous values (but less consistent) and exponents in the range 
i .OO * 0.02. The series evidence thus favours a conventional power-law singularity. 

Series for the range - 1.5 4 A C= -0.6 have been analysed in this way and the estimated 
critical temperatures are shown in figure 5, together with the values of the critical 
wavenumber qc. The values of q, are in very good agreement with those obtained by 
other methods (Selke 1981, Duxbury and Barber 1982). There is an apparent small 
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Figure 5. Variation of critical temperature with J 2 / J o  for the 2D A N N N I  model, as deter- 
mined from a high temperature series. The numbers in brackets are the values of the 
critical wavenumber qc. The inset shows the generally accepted form of the 2D phase 
diagram, showing ferromagnetic (F), incommensurate ( I ) ,  and commensurate (2) phases. 

variation in the exponent y along the critical line, with y = 1.75 at A = - 1.5 increasing 
to y = 2.15 at A = -0.6. There is no unusual behaviour in the region A = - 1.1 which 
might indicate the existence of a Lifshitz point marking the junction of incommensurate, 
paramagnetic, and modulated (2) phases. Such a Lifshitz point has been predicted in 
some previous work. For A > -0.6 the series become irregular for all wavenumbers 
and it has not been possible to carry out any convincing analysis. 

5. Conclusions 

We have presented results of a study of the ANNNI model in both three and two 
dimensions, based on eleven-term high temperature series for the wavevector dependent 
susceptibility. The results extend previous series studies and complement those 
obtained by other methods. The main advantage of series methods is that one can, in 
many cases, obtain very accurate estimates of critical temperatures and exponents. 
However, the method does have limitations in situations where complex critical 
behaviour is expected, as in the vicinity of multicritical points, since the available 
series are too short to reveal the true asymptotic behaviour in such cases. 

For the three-dimensional case our results are, we feel, reliable over the entire 
range of interaction parameters, and provide accurate estimates of the boundaries of 
the ferromagnetic and modulated phases, as well as the location of the Lifshitz point. 
It must be admitted, with hindsight, that the addition of three additional terms to the 
series of Redner and Stanley (1977b) has produced no really significant change in 
their results. The rather unusual behaviour of the exponent y along the paramag- 
netic/modulated line still remains. 

For the two-dimensional case we have given the only published series results, 
although Redner has obtained ten-term series several years ago. In this case there is 
a range of parameters -0.6s A 6 -0.3 for which the series are too irregular to allow 
definite conclusions to be drawn. We interpret our results of figure 5 to be consistent 
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with the currently accepted picture in which the paramagnetic phase extends to zero 
temperature at the multiphase point A = -0.5. Our results favour a power-law singular- 
ity along the paramagnetic/incommensurate line with an exponent y in the range 
1.75-2.15, rather than an essential singularity of the Kosterlitz-Thouless type. There 
is no evidence for a finite temperature Lifshitz point on the incommensurate side of 
the phase diagram. 

Our results clearly demonstrate that the critical behaviour of this model in two and 
three dimensions is quite different. Further analysis of the series may be able to resolve 
some of the puzzles which still remain. A number of series are given in the appendix 
and other attempts to analyse them would be welcomed. Series for other cases can 
be obtained upon request. Studies using different techniques, such as Monte Carlo 
renormalisation (Swendsen 1979), or a special purpose computer (Hoogland ef a1 
1983) may also answer some of the unresolved questions. 
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Appendix 

Table 1. Susceptibility series for the three-dimensional model. 

A = l , q = O  

1.000 000 000 OOEO 
8.000 000 000 OOEO 
5.600 000 000 OOEl 
3.833 333 333 33E2 
2.574 666 666 67E3 
1.715 30666667E4 
1.13384488889E5 
7.459 306 349 21 E5 
4.886 583 377 78E6 
3.19147844501E7 
2.078 971 450 36E8 
1.351 506 363 4389 

A = -0.2, = 0 

1.000 000 000 OOEO 
5.600 000 000 OOEO 
2.528 000 000 OOE I 
1.127 093 333 33E2 
4.781 290 666 67E2 
2.039 17431467E3 
8.444 735 621 69E3 
3.528 699 075 87E4 
1.446 10007301E5 
5.983 568 056 28E5 
2.435 438 857 98E6 
1.001 946 221 65E7 

A = -0.3, = 0.07 A = -0.4, q z 0 . 1 3  

A = -0.25, = 0 

1.000 000 000 OOEO 
5.500 000 000 OOEO 
2.4 I2 500 000 OOE 1 
1.044 791 666 67E2 
4.277 526 041 67E2 
1.76561223958E3 
7.027 978 I46 70E3 
2.837 678 530 35E4 
1.1 I5 588 367 37E5 
4.459 48 I 893 69E5 
1.737 880894 l2E6 
6.912021 026 13E6 

A = -0.8, = 0.20 

1.000 000 000 OOEO 
5.427 199 71 I 08E0 
2.327 449 670 40El 
9.842 540 304 59EI 
3.908 949 392 04E2 
1.568 406 293 77E3 
6.019 952 475 72E2 
2.357 132601 81E4 
8.898 546 940 33E4 
3.447 I13 753 57E5 
1.284 292 586 25E6 
4.955 670 586 96E6 

1.000 000 000 OOEO 
5.419 326 627 48E0 
2.304910 109 53EI 
9.664 521 728 53E1 
3.784 272 I53 4382 
1.502 517 521 69E3 
5.659 067 980 61E3 
2.193 871 046 76E4 
8.095 533 450 93E4 
3.1 1 I257 3746685 
1.127015 5253386 
4.337064913 7586 

1.000 000 000 OOEO 
5.912461 I79 75E0 
2.767 719 720 20E1 
1.290 286 148 93E2 
5.655 526 537 41E2 
2.534 053 661 88E3 
1.081 41030686E4 
4.779 306 252 94E4 
2.008 901 594 30E5 
8.845 306 830 19E5 
3.663 052 538 83E6 
1.619 764452 80E7 
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Table 2. Susceptibility series for the two-dimensional model. 

A = I , q = O  A = -0.2, q = 0 A = -0.3, q = 0 

1.000 000 000 OOEO 
6.000 000 000 OOEO 
3.000 000 000 OOE 1 
1.420 000 000 00E2 
6.460 000 000 00E2 
2.860 800 000 00E3 
1.239 133 333 33E4 
5.282 660 952 38E4 
2.225 032 952 38E5 
9.283 588 613 76E5 
3.843 439 686 77E6 
1.580 957 573 26E7 

1 .OOO 000 000 OOEO 
3.600 000 000 OOEO 
8.880 000 000 OOEO 
2.1 13 600 000 OOEl 
4.232 640 000 OOEl 
8.955 084 800 OOEl 
1.761 849 941 33E2 
3.616 261 234 59E2 
6.987 397 650 05E2 
1.398 91442046E3 
2.657 642 389 9583 
5.275 689 383 03E3 

1.000 000 000 OOEO 
3 400 000 000 OOEO 
7.380 000 000 OOEO 
1.531 06666667E1 
2.345 340 000 OOEl 
4.264 228 533 33E1 
6.365 392 080 OOEl 
1.206 617 475 63E2 
1.760 274 274 80E2 
3.455 550 842 37E2 
4.500 903 505 23E2 
1.002 642 939 9783 

A = -0.4, q = 0 A = - 1 .O, 4 = 0.22 

1 .OOO 000 000 OOEO 1.000 000 000 OOEO 
3.200 000 000 OOEO 4.234 315 60095EO 
5.920 000 000 OOEO 1.192 942 860 84El 
1.010 133 333 33E1 3.392 994 912 87E1 
8.219 733 333 33E0 7.823 423 083 54EI 
1.15642026667E1 6.581 05304606E1 2.126912 352 83E2 
8.298 609 778 05E - 1 4.397 595 748 62E2 
2.041 867 52407El 1.197 761 272 18E3 

-7.577 164621 13EO 2.042 922 085 67E2 2.245 785 49515E3 
8.480 364 098 15E1 6.516 892 569 93E3 

-8.477 105 13684El 1.044 532 497 78E4 
3.716 329 053 94E2 3.530 374 358 55E4 

A = -0.6, q = 0.18 

I.000 000 000 OOEO 
3.616 467 370 83E0 
8.358 836 244 27E0 
1.884 434 970 97El 
3.1 I 1  313 678 94El 

9.165608431 28E1 
2.012 541 588 12E2 

6.017 247 298 68E2 
2.423 560 593 08E2 
2.089 270 682 22E3 
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